Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Complexity Channel Reconstruction Methods Based on SVD-ZF Precoding in Massive 3D-MIMO Systems (1510.08507v1)

Published 28 Oct 2015 in cs.IT and math.IT

Abstract: In this paper, we study the low-complexity channel reconstruction methods for downlink precoding in massive multiple-Input multiple-Output (MIMO) systems. When the user is allocated less streams than the number of its antennas, the base station (BS) or user usually utilizes the singular value decomposition (SVD) to get the effective channels, whose dimension is equal to the number of streams. This process is called channel reconstruction and done in BS for time division duplex (TDD) mode. However, with the increasing of antennas in BS, the computation burden of SVD is getting incredible. Here, we propose a series of novel low-complexity channel reconstruction methods for downlink precoding in 3D spatial channel model. We consider different correlations between elevation and azimuth antennas, and divide the large dimensional matrix SVD into two kinds of small-size matrix SVD. The simulation results show that the proposed methods only produce less than 10% float computation than the traditional SVD zero-forcing (SVD-ZF) precoding method, while keeping nearly the same performance of 1Gbps.

Citations (7)

Summary

We haven't generated a summary for this paper yet.