Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

About the analogy between optimal transport and minimal entropy (1510.08230v2)

Published 28 Oct 2015 in math.PR and math.AP

Abstract: We describe some analogy between optimal transport and the Schr\"odinger problem where the transport cost is replaced by an entropic cost with a reference path measure. A dual Kantorovich type formulation and a Benamou-Brenier type representation formula of the entropic cost are derived, as well as contraction inequalities with respect to the entropic cost. This analogy is also illustrated with some numerical examples where the reference path measure is given by the Brownian or the Ornstein-Uhlenbeck process. Our point of view is measure theoretical and the relative entropy with respect to path measures plays a prominent role.

Summary

We haven't generated a summary for this paper yet.