Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An iterative method to reconstruct the refractive index of a medium from time-of-flight measurements (1510.06899v1)

Published 23 Oct 2015 in math.NA

Abstract: The article deals with a classical inverse problem: the computation of the refractive index of a medium from ultrasound time-of-flight (TOF) measurements. This problem is very popular in seismics but also for tomographic problems in inhomogeneous media. For example ultrasound vector field tomography needs a priori knowledge of the sound speed. According to Fermat's principle ultrasound signals travel along geodesic curves of a Riemannian metric which is associated with the refractive index. The inverse problem thus consists of determining the index of refraction from integrals along geodesics curves associated with the integrand leading to a nonlinear problem. In this article we describe a numerical solver for this problem scheme based on an iterative minimization method for an appropriate Tikhonov functional. The outcome of the method is a stable approximation of the sought index of refraction as well as a corresponding set of geodesic curves. We prove some analytical convergence results for this method and demonstrate its performance by means of several numerical experiments. Another novelty in this article is the explicit representation of the backprojection operator for the ray transform in Riemannian geometry and its numerical realization relying on a corresponding phase function that is determined by the metric. This gives a natural extension of the conventional backprojection from 2D computerized tomography to inhomogeneous geometries.

Summary

We haven't generated a summary for this paper yet.