Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Alternative SDP and SOCP Approximations for Polynomial Optimization (1510.06797v3)

Published 23 Oct 2015 in math.OC

Abstract: In theory, hierarchies of semidefinite programming (SDP) relaxations based on sum of squares (SOS) polynomials have been shown to provide arbitrarily close approximations for a general polynomial optimization problem (POP). However, due to the computational challenge of solving SDPs, it becomes difficult to use SDP hierarchies for large-scale problems. To address this, hierarchies of second-order cone programming (SOCP) relaxations resulting from a restriction of the SOS polynomial condition have been recently proposed to approximate POPs. Here, we consider alternative ways to use this SOCP restrictions of the SOS condition. In particular, we show that SOCP hierarchies can be effectively used to strengthen hierarchies of linear programming (LP) relaxations for POPs. Specifically, we show that this solution approach is substantially more effective in finding solutions of certain POPs for which the more common hierarchies of SDP relaxations are known to perform poorly. Furthermore, when the feasible set of the POP is compact, these SOCP hierarchies converge to the POP's optimal value.

Summary

We haven't generated a summary for this paper yet.