Weighted Endpoint Estimates for Commutators of Calderón-Zygmund Operators (1510.05855v1)
Abstract: Let $\delta\in(0,1]$ and $T$ be a $\delta$-Calder\'on-Zygmund operator. Let $w$ be in the Muckenhoupt class $A_{1+\delta/n}({\mathbb R}n)$ satisfying $\int_{{\mathbb R}n}\frac {w(x)}{1+|x|n}\,dx<\infty$. When $b\in{\rm BMO}(\mathbb Rn)$, it is well known that the commutator $[b, T]$ is not bounded from $H1(\mathbb Rn)$ to $L1(\mathbb Rn)$ if $b$ is not a constant function. In this article, the authors find out a proper subspace ${\mathop\mathcal{BMO}w({\mathbb R}n)}$ of $\mathop\mathrm{BMO}(\mathbb Rn)$ such that, if $b\in {\mathop\mathcal{BMO}_w({\mathbb R}n)}$, then $[b,T]$ is bounded from the weighted Hardy space $H_w1(\mathbb Rn)$ to the weighted Lebesgue space $L_w1(\mathbb Rn)$. Conversely, if $b\in{\rm BMO}({\mathbb R}n)$ and the commutators of the classical Riesz transforms ${[b,R_j]}{j=1}n$ are bounded from $H1_w({\mathbb R}n)$ into $L1_w({\mathbb R}n)$, then $b\in {\mathop\mathcal{BMO}_w({\mathbb R}n)}$.