Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable inference for a full multivariate stochastic volatility model (1510.05257v2)

Published 18 Oct 2015 in stat.ML

Abstract: We introduce a multivariate stochastic volatility model for asset returns that imposes no restrictions to the structure of the volatility matrix and treats all its elements as functions of latent stochastic processes. When the number of assets is prohibitively large, we propose a factor multivariate stochastic volatility model in which the variances and correlations of the factors evolve stochastically over time. Inference is achieved via a carefully designed feasible and scalable Markov chain Monte Carlo algorithm that combines two computationally important ingredients: it utilizes invariant to the prior Metropolis proposal densities for simultaneously updating all latent paths and has quadratic, rather than cubic, computational complexity when evaluating the multivariate normal densities required. We apply our modelling and computational methodology to $571$ stock daily returns of Euro STOXX index for data over a period of $10$ years. MATLAB software for this paper is available at http://www.aueb.gr/users/mtitsias/code/msv.zip.

Citations (3)

Summary

We haven't generated a summary for this paper yet.