Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ando dilations, von Neumann inequality, and distinguished varieties (1510.04655v2)

Published 15 Oct 2015 in math.FA, math.CV, and math.OA

Abstract: Let $\mathbb{D}$ denote the unit disc in the complex plane $\mathbb{C}$ and let $\mathbb{D}2 = \mathbb{D} \times \mathbb{D}$ be the unit bidisc in $\mathbb{C}2$. Let $(T_1, T_2)$ be a pair of commuting contractions on a Hilbert space $\mathcal{H}$. Let $\mbox{dim } \mbox{ran}(I_{\mathcal{H}} - T_j T_j*) < \infty$, $j = 1, 2$, and let $T_1$ be a pure contraction. Then there exists a variety $V \subseteq \overline{\mathbb{D}}2$ such that for any polynomial $p \in \mathbb{C}[z_1, z_2]$, the inequality [ |p(T_1,T_2)|{\mathcal{B}(\mathcal{H})} \leq |p|_V ] holds. If, in addition, $T_2$ is pure, then [V = {(z_1, z_2) \in \mathbb{D}2: \det (\Psi(z_1) - z_2 I{\mathbb{C}n}) = 0}]is a distinguished variety, where $\Psi$ is a matrix-valued analytic function on $\mathbb{D}$ that is unitary on $\partial \mathbb{D}$. Our results comprise a new proof, as well as a generalization, of Agler and McCarthy's sharper von Neumann inequality for pairs of commuting and strictly contractive matrices.

Summary

We haven't generated a summary for this paper yet.