Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounded Plurisubharmonic Exhaustion Functions for Lipschitz Pseudoconvex Domains in $\mathbb{CP}^n$ (1510.03737v1)

Published 13 Oct 2015 in math.CV

Abstract: In this paper, we use Takeuchi's Theorem to show that for every Lipschitz pseudoconvex domain $\Omega$ in $\mathbb{CP}n$ there exists a Lipschitz defining function $\rho$ and an exponent $0<\eta<1$ such that $-(-\rho)\eta$ is strictly plurisubharmonic on $\Omega$. This generalizes a result of Ohsawa and Sibony for $C2$ domains. In contrast to the Ohsawa-Sibony result, we provide a counterexample demonstrating that we may not assume $\rho=-\delta$, where $\delta$ is the geodesic distance function for the boundary of $\Omega$.

Summary

We haven't generated a summary for this paper yet.