Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Community Detection Using Slow Mixing Markov Models (1510.02583v1)

Published 9 Oct 2015 in cs.SI

Abstract: The task of \emph{community detection} in a graph formalizes the intuitive task of grouping together subsets of vertices such that vertices within clusters are connected tighter than those in disparate clusters. This paper approaches community detection in graphs by constructing Markov random walks on the graphs. The mixing properties of the random walk are then used to identify communities. We use coupling from the past as an algorithmic primitive to translate the mixing properties of the walk into revealing the community structure of the graph. We analyze the performance of our algorithms on specific graph structures, including the stochastic block models (SBM) and LFR random graphs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.