Nested domain decomposition with polarized traces for the 2D Helmholtz equation (1510.01831v2)
Abstract: We present a solver for the 2D high-frequency Helmholtz equation in heterogeneous, constant density, acoustic media, with online parallel complexity that scales empirically as $\mathcal{O}(\frac{N}{P})$, where $N$ is the number of volume unknowns, and $P$ is the number of processors, as long as $P = \mathcal{O}(N{1/5})$. This sublinear scaling is achieved by domain decomposition, not distributed linear algebra, and improves on the $P =\mathcal{O}(N{1/8})$ scaling reported earlier in [L. Zepeda-N\'u~nez and L. Demanet, J. Comput. Phys., 308 (2016), pp. 347-388 ]. The solver relies on a two-level nested domain decomposition: a layered partition on the outer level, and a further decomposition of each layer in cells at the inner level. The Helmholtz equation is reduced to a surface integral equation (SIE) posed at the interfaces between layers, efficiently solved via a nested version of the polarized traces preconditioner [L. Zepeda-N\'u~nez and L. Demanet, J. Comput. Phys., 308 (2016), pp. 347-388.]. The favorable complexity is achieved via an efficient application of the integral operators involved in the SIE.