2000 character limit reached
On a trilinear singular integral form with determinantal kernel (1510.01069v1)
Published 5 Oct 2015 in math.CA
Abstract: We study a trilinear singular integral form acting on two-dimensional functions and possessing invariances under arbitrary matrix dilations and linear modulations. One part of the motivation for introducing it lies in its large symmetry groups acting on the Fourier side. Another part of the motivation is that this form stands between the bilinear Hilbert transforms and the first Calder\'on commutator, in the sense that it can be reduced to a superposition of the former, while it also successfully encodes the latter. As the main result we determine the exact range of exponents in which the ${L}p$ estimates hold for the considered form.