Poisson reduction as a coisotropic intersection
Abstract: We give a definition of coisotropic morphisms of shifted Poisson (i.e. $P_n$) algebras which is a derived version of the classical notion of coisotropic submanifolds. Using this we prove that an intersection of coisotropic morphisms of shifted Poisson algebras carries a Poisson structure of shift one less. Using an interpretation of Hamiltonian spaces as coisotropic morphisms we show that the classical BRST complex computing derived Poisson reduction coincides with the complex computing coisotropic intersection. Moreover, this picture admits a quantum version using brace algebras and their modules: the quantum BRST complex is quasi-isomorphic to the complex computing tensor product of brace modules.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.