Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
37 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Adaptive Rejection Sampling with fixed number of nodes (1509.07985v2)

Published 26 Sep 2015 in stat.CO

Abstract: The adaptive rejection sampling (ARS) algorithm is a universal random generator for drawing samples efficiently from a univariate log-concave target probability density function (pdf). ARS generates independent samples from the target via rejection sampling with high acceptance rates. Indeed, ARS yields a sequence of proposal functions that converge toward the target pdf, so that the probability of accepting a sample approaches one. However, sampling from the proposal pdf becomes more computational demanding each time it is updated. In this work, we propose a novel ARS scheme, called Cheap Adaptive Rejection Sampling (CARS), where the computational effort for drawing from the proposal remains constant, decided in advance by the user. For generating a large number of desired samples, CARS is faster than ARS.

Summary

We haven't generated a summary for this paper yet.