Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning-Based Modular Indirect Adaptive Control for a Class of Nonlinear Systems (1509.07860v1)

Published 25 Sep 2015 in cs.SY

Abstract: We study in this paper the problem of adaptive trajectory tracking control for a class of nonlinear systems with parametric uncertainties. We propose to use a modular approach, where we first design a robust nonlinear state feedback which renders the closed loop input-to-state stable (ISS), where the input is considered to be the estimation error of the uncertain parameters, and the state is considered to be the closed-loop output tracking error. Next, we augment this robust ISS controller with a model-free learning algorithm to estimate the model uncertainties. We implement this method with two different learning approaches. The first one is a model-free multi-parametric extremum seeking (MES) method and the second is a Bayesian optimization-based method called Gaussian Process Upper Confidence Bound (GP-UCB). The combination of the ISS feedback and the learning algorithms gives a learning-based modular indirect adaptive controller. We show the efficiency of this approach on a two-link robot manipulator example.

Citations (4)

Summary

We haven't generated a summary for this paper yet.