Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A fully discrete variational scheme for solving nonlinear Fokker-Planck equations in higher space dimensions (1509.07721v3)

Published 25 Sep 2015 in math.NA and math.AP

Abstract: We introduce a novel spatio-temporal discretization for nonlinear Fokker-Planck equations on the multi-dimensional unit cube. This discretization is based on two structural properties of these equations: the first is the representation as a gradient flow of an entropy functional in the $L2$-Wasserstein metric, the second is the Lagrangian nature, meaning that solutions can be written as the push forward transformation of the initial density under suitable flow maps. The resulting numerical scheme is entropy diminishing and mass conserving. Further, the scheme is weakly stable, which allows us to prove convergence under certain regularity assumptions. Finally, we present results from numerical experiments in space dimension $d=2$.

Summary

We haven't generated a summary for this paper yet.