Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-dimensional robust precision matrix estimation: Cellwise corruption under $ε$-contamination (1509.07229v1)

Published 24 Sep 2015 in math.ST and stat.TH

Abstract: We analyze the statistical consistency of robust estimators for precision matrices in high dimensions. We focus on a contamination mechanism acting cellwise on the data matrix. The estimators we analyze are formed by plugging appropriately chosen robust covariance matrix estimators into the graphical Lasso and CLIME. Such estimators were recently proposed in the robust statistics literature, but only analyzed mathematically from the point of view of the breakdown point. This paper provides complementary high-dimensional error bounds for the precision matrix estimators that reveal the interplay between the dimensionality of the problem and the degree of contamination permitted in the observed distribution. We also show that although the graphical Lasso and CLIME estimators perform equally well from the point of view of statistical consistency, the breakdown property of the graphical Lasso is superior to that of CLIME. We discuss implications of our work for problems involving graphical model estimation when the uncontaminated data follow a multivariate normal distribution, and the goal is to estimate the support of the population-level precision matrix. Our error bounds do not make any assumptions about the the contaminating distribution and allow for a nonvanishing fraction of cellwise contamination.

Summary

We haven't generated a summary for this paper yet.