Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Emphatic Temporal Difference Learning: Bias-Variance Analysis (1509.05172v2)

Published 17 Sep 2015 in stat.ML and cs.LG

Abstract: We consider the off-policy evaluation problem in Markov decision processes with function approximation. We propose a generalization of the recently introduced \emph{emphatic temporal differences} (ETD) algorithm \citep{SuttonMW15}, which encompasses the original ETD($\lambda$), as well as several other off-policy evaluation algorithms as special cases. We call this framework \ETD, where our introduced parameter $\beta$ controls the decay rate of an importance-sampling term. We study conditions under which the projected fixed-point equation underlying \ETD\ involves a contraction operator, allowing us to present the first asymptotic error bounds (bias) for \ETD. Our results show that the original ETD algorithm always involves a contraction operator, and its bias is bounded. Moreover, by controlling $\beta$, our proposed generalization allows trading-off bias for variance reduction, thereby achieving a lower total error.

Citations (52)

Summary

We haven't generated a summary for this paper yet.