Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representations of crossed modules and other generalized Yetter-Drinfel'd modules (1509.03497v1)

Published 11 Sep 2015 in math.QA, math.AT, and math.CT

Abstract: The Yang-Baxter equation plays a fundamental role in various areas of mathematics. Its solutions, called braidings, are built, among others, from Yetter-Drinfel'd modules over a Hopf algebra, from self-distributive structures, and from crossed modules of groups. In the present paper these three sources of solutions are unified inside the framework of Yetter-Drinfe' d modules over a braided system. A systematic construction of braiding structures on such modules is provided. Some general categorical methods of obtaining such generalized Yetter-Drinfel'd (=GYD) modules are described. Among the braidings recovered using these constructions are the Woronowicz and the Hennings braidings on a Hopf algebra. We also introduce the notions of crossed modules of shelves / Leibniz algebras, and interpret them as GYD modules. This yields new sources of braidings. We discuss whether these braidings stem from a braided monoidal category, and discover several non-strict pre-tensor categories with interesting associators.

Summary

We haven't generated a summary for this paper yet.