Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sample Efficient Path Integral Control under Uncertainty (1509.01846v3)

Published 6 Sep 2015 in cs.SY

Abstract: We present a data-driven optimal control framework that can be viewed as a generalization of the path integral (PI) control approach. We find iterative feedback control laws without parameterization based on probabilistic representation of learned dynamics model. The proposed algorithm operates in a forward-backward manner which differentiate from other PI-related methods that perform forward sampling to find optimal controls. Our method uses significantly less samples to find optimal controls compared to other approaches within the PI control family that relies on extensive sampling from given dynamics models or trials on physical systems in model-free fashions. In addition, the learned controllers can be generalized to new tasks without re-sampling based on the compositionality theory for the linearly-solvable optimal control framework. We provide experimental results on three different systems and comparisons with state-of-the-art model-based methods to demonstrate the efficiency and generalizability of the proposed framework.

Citations (27)

Summary

We haven't generated a summary for this paper yet.