Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Generalized Quantile Treatment Effect: A Flexible Bayesian Approach Using Quantile Ratio Smoothing (1509.01042v1)

Published 3 Sep 2015 in math.ST and stat.TH

Abstract: We propose a new general approach for estimating the effect of a binary treatment on a continuous and potentially highly skewed response variable, the generalized quantile treatment effect (GQTE). The GQTE is defined as the difference between a function of the quantiles under the two treatment conditions. As such, it represents a generalization over the standard approaches typically used for estimating a treatment effect (i.e., the average treatment effect and the quantile treatment effect) because it allows the comparison of any arbitrary characteristic of the outcome's distribution under the two treatments. Following Dominici et al. (2005), we assume that a pre-specified transformation of the two quantiles is modeled as a smooth function of the percentiles. This assumption allows us to link the two quantile functions and thus to borrow information from one distribution to the other. The main theoretical contribution we provide is the analytical derivation of a closed form expression for the likelihood of the model. Exploiting this result we propose a novel Bayesian inferential methodology for the GQTE. We show some finite sample properties of our approach through a simulation study which confirms that in some cases it performs better than other nonparametric methods. As an illustration we finally apply our methodology to the 1987 National Medicare Expenditure Survey data to estimate the difference in the single hospitalization medical cost distributions between cases (i.e., subjects affected by smoking attributable diseases) and controls.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.