Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Flexible Expectile Regression in Reproducing Kernel Hilbert Space (1508.05987v2)

Published 24 Aug 2015 in stat.ME

Abstract: Expectile, first introduced by Newey and Powell (1987) in the econometrics literature, has recently become increasingly popular in risk management and capital allocation for financial institutions due to its desirable properties such as coherence and elicitability. The current standard tool for expectile regression analysis is the multiple linear expectile regression proposed by Newey and Powell in 1987. The growing applications of expectile regression motivate us to develop a much more flexible nonparametric multiple expectile regression in a reproducing kernel Hilbert space. The resulting estimator is called KERE which has multiple advantages over the classical multiple linear expectile regression by incorporating non-linearity, non-additivity and complex interactions in the final estimator. The kernel learning theory of KERE is established. We develop an efficient algorithm inspired by majorization-minimization principle for solving the entire solution path of KERE. It is shown that the algorithm converges at least at a linear rate. Extensive simulations are conducted to show the very competitive finite sample performance of KERE. We further demonstrate the application of KERE by using personal computer price data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)