Assortativity and leadership emergence from anti-preferential attachment in heterogeneous networks (1508.03528v2)
Abstract: Many real-world networks exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Particularly in social networks, the contribution to the total assortativity varies with degree, featuring a distinctive peak slightly past the average degree. The way traditional models imprint assortativity on top of pre-defined topologies is via degree-preserving link permutations, which however destroy the particular graph's hierarchical traits of clustering. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties and tunable realistic assortativity. In our approach, two distinct populations of nodes are added to an initial network seed: one (the followers) that abides by usual preferential rules, and one (the potential leaders) connecting via anti-preferential attachments, i.e. selecting lower degree nodes for their initial links. The latter nodes come to develop a higher average degree, and convert eventually into the final hubs. Examining the evolution of links in Facebook, we present empirical validation for the connection between the initial anti-preferential attachment and long term high degree. Thus, our work sheds new light on the structure and evolution of social networks.
- I. SendiƱa-Nadal (19 papers)
- M. M. Danziger (1 paper)
- Z. Wang (1489 papers)
- S. Havlin (14 papers)
- S. Boccaletti (33 papers)