Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Generalized Multiscale Finite Element Method for Poroelasticity Problems I: Linear Problems (1508.02136v1)

Published 10 Aug 2015 in math.NA, cs.CE, cs.NA, and physics.comp-ph

Abstract: In this paper, we consider the numerical solution of poroelasticity problems that are of Biot type and develop a general algorithm for solving coupled systems. We discuss the challenges associated with mechanics and flow problems in heterogeneous media. The two primary issues being the multiscale nature of the media and the solutions of the fluid and mechanics variables traditionally developed with separate grids and methods. For the numerical solution we develop and implement a Generalized Multiscale Finite Element Method (GMsFEM) that solves problem on a coarse grid by constructing local multiscale basis functions. The procedure begins with construction of multiscale bases for both displacement and pressure in each coarse block. Using a snapshot space and local spectral problems, we construct a basis of reduced dimension. Finally, after multiplying by a multiscale partitions of unity, the multiscale basis is constructed in the offline phase and the coarse grid problem then can be solved for arbitrary forcing and boundary conditions. We implement this algorithm on two heterogenous media and compute error between the multiscale solution with the fine-scale solutions. Randomized oversampling and forcing strategies are also tested.

Citations (42)

Summary

We haven't generated a summary for this paper yet.