Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of Clustering on the Performance of Network De-anonymization (1508.02017v1)

Published 9 Aug 2015 in cs.SI

Abstract: Recently, graph matching algorithms have been successfully applied to the problem of network de-anonymization, in which nodes (users) participating to more than one social network are identified only by means of the structure of their links to other members. This procedure exploits an initial set of seed nodes large enough to trigger a percolation process which correctly matches almost all other nodes across the different social networks. Our main contribution is to show the crucial role played by clustering, which is a ubiquitous feature of realistic social network graphs (and many other systems). Clustering has both the effect of making matching algorithms more vulnerable to errors, and the potential to dramatically reduce the number of seeds needed to trigger percolation, thanks to a wave-like propagation effect. We demonstrate these facts by considering a fairly general class of random geometric graphs with variable clustering level, and showing how clever algorithms can achieve surprisingly good performance while containing matching errors.

Citations (15)

Summary

We haven't generated a summary for this paper yet.