Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

Low-Rank Signal Processing: Design, Algorithms for Dimensionality Reduction and Applications (1508.00636v1)

Published 4 Aug 2015 in cs.IT and math.IT

Abstract: We present a tutorial on reduced-rank signal processing, design methods and algorithms for dimensionality reduction, and cover a number of important applications. A general framework based on linear algebra and linear estimation is employed to introduce the reader to the fundamentals of reduced-rank signal processing and to describe how dimensionality reduction is performed on an observed discrete-time signal. A unified treatment of dimensionality reduction algorithms is presented with the aid of least squares optimization techniques, in which several techniques for designing the transformation matrix that performs dimensionality reduction are reviewed. Among the dimensionality reduction techniques are those based on the eigen-decomposition of the observed data vector covariance matrix, Krylov subspace methods, joint and iterative optimization (JIO) algorithms and JIO with simplified structures and switching (JIOS) techniques. A number of applications are then considered using a unified treatment, which includes wireless communications, sensor and array signal processing, and speech, audio, image and video processing. This tutorial concludes with a discussion of future research directions and emerging topics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)