Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding the Detection of View Fraud in Video Content Portals (1507.08874v2)

Published 31 Jul 2015 in cs.CY

Abstract: While substantial effort has been devoted to understand fraudulent activity in traditional online advertising (search and banner), more recent forms such as video ads have received little attention. The understanding and identification of fraudulent activity (i.e., fake views) in video ads for advertisers, is complicated as they rely exclusively on the detection mechanisms deployed by video hosting portals. In this context, the development of independent tools able to monitor and audit the fidelity of these systems are missing today and needed by both industry and regulators. In this paper we present a first set of tools to serve this purpose. Using our tools, we evaluate the performance of the audit systems of five major online video portals. Our results reveal that YouTube's detection system significantly outperforms all the others. Despite this, a systematic evaluation indicates that it may still be susceptible to simple attacks. Furthermore, we find that YouTube penalizes its videos' public and monetized view counters differently, the former being more aggressive. This means that views identified as fake and discounted from the public view counter are still monetized. We speculate that even though YouTube's policy puts in lots of effort to compensate users after an attack is discovered, this practice places the burden of the risk on the advertisers, who pay to get their ads displayed.

Citations (37)

Summary

We haven't generated a summary for this paper yet.