Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resource location based on precomputed partial random walks in dynamic networks (1507.08476v2)

Published 30 Jul 2015 in cs.NI

Abstract: The problem of finding a resource residing in a network node (the \emph{resource location problem}) is a challenge in complex networks due to aspects as network size, unknown network topology, and network dynamics. The problem is especially difficult if no requirements on the resource placement strategy or the network structure are to be imposed, assuming of course that keeping centralized resource information is not feasible or appropriate. Under these conditions, random algorithms are useful to search the network. A possible strategy for static networks, proposed in previous work, uses short random walks precomputed at each network node as partial walks to construct longer random walks with associated resource information. In this work, we adapt the previous mechanisms to dynamic networks, where resource instances may appear in, and disappear from, network nodes, and the nodes themselves may leave and join the network, resembling realistic scenarios. We analyze the resulting resource location mechanisms, providing expressions that accurately predict average search lengths, which are validated using simulation experiments. Reduction of average search lengths compared to simple random walk searches are found to be very large, even in the face of high network volatility. We also study the cost of the mechanisms, focusing on the overhead implied by the periodic recomputation of partial walks to refresh the information on resources, concluding that the proposed mechanisms behave efficiently and robustly in dynamic networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.