Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The dynamic of information-driven coordination phenomena: a transfer entropy analysis (1507.06106v1)

Published 22 Jul 2015 in physics.soc-ph, cs.SI, nlin.AO, and physics.data-an

Abstract: Data from social media are providing unprecedented opportunities to investigate the processes that rule the dynamics of collective social phenomena. Here, we consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of micro-blogging time series to extract directed networks of influence among geolocalized sub-units in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time-scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social sub-units. In the absence of a clear exogenous driving, social collective phenomena can be represented as endogenously-driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data.

Citations (93)

Summary

We haven't generated a summary for this paper yet.