Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust speech recognition using consensus function based on multi-layer networks (1507.06023v1)

Published 22 Jul 2015 in cs.CL and cs.LG

Abstract: The clustering ensembles mingle numerous partitions of a specified data into a single clustering solution. Clustering ensemble has emerged as a potent approach for ameliorating both the forcefulness and the stability of unsupervised classification results. One of the major problems in clustering ensembles is to find the best consensus function. Finding final partition from different clustering results requires skillfulness and robustness of the classification algorithm. In addition, the major problem with the consensus function is its sensitivity to the used data sets quality. This limitation is due to the existence of noisy, silence or redundant data. This paper proposes a novel consensus function of cluster ensembles based on Multilayer networks technique and a maintenance database method. This maintenance database approach is used in order to handle any given noisy speech and, thus, to guarantee the quality of databases. This can generates good results and efficient data partitions. To show its effectiveness, we support our strategy with empirical evaluation using distorted speech from Aurora speech databases.

Summary

We haven't generated a summary for this paper yet.