Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Learning Algorithms for Spectrum Sharing in Spatial Random Access Wireless Networks (1507.05664v2)

Published 20 Jul 2015 in cs.NI, cs.IT, and math.IT

Abstract: We consider distributed optimization over orthogonal collision channels in spatial random access networks. Users are spatially distributed and each user is in the interference range of a few other users. Each user is allowed to transmit over a subset of the shared channels with a certain attempt probability. We study both the non-cooperative and cooperative settings. In the former, the goal of each user is to maximize its own rate irrespective of the utilities of other users. In the latter, the goal is to achieve proportionally fair rates among users. Simple distributed learning algorithms are developed to solve these problems. The efficiencies of the proposed algorithms are demonstrated via both theoretical analysis and simulation results.

Citations (46)

Summary

We haven't generated a summary for this paper yet.