Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-backtracking loop soups and statistical mechanics on spin networks (1507.05065v3)

Published 17 Jul 2015 in math-ph, cond-mat.stat-mech, math.MP, and math.PR

Abstract: We introduce and study a Markov field on the edges of a graph in dimension $d\geq2$ whose configurations are spin networks. The field arises naturally as the edge-occupation field of a Poissonian model (a soup) of non-backtracking loops and walks characterized by a spatial Markov property such that, conditionally on the value of the edge-occupation field on a boundary set, the distributions of the loops and arcs on either side of the boundary are independent of each other. The field has a Gibbs distribution with a Hamiltonian given by a sum of terms which involve only edges incident on the same vertex. Its free energy density and other quantities can be computed exactly, and their critical behavior analyzed, in any dimension.

Summary

We haven't generated a summary for this paper yet.