Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero-Moser systems and KZB equations (1507.04265v2)

Published 15 Jul 2015 in math-ph, math.MP, and nlin.SI

Abstract: We construct twisted Calogero-Moser (CM) systems with spins as the Hitchin systems derived from the Higgs bundles over elliptic curves, where transitions operators are defined by an arbitrary finite order automorphisms of the underlying Lie algebras. In this way we obtain the spin generalization of the twisted D'Hoker- Phong and Bordner-Corrigan-Sasaki-Takasaki systems. As by product, we construct the corresponding twisted classical dynamical r-matrices and Knizhnik-Zamolodchikov-Bernard equations related to the automorphisms of the Lie algebras.

Summary

We haven't generated a summary for this paper yet.