Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
136 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Space Filling Curves for 3D Sensor Networks with Complex Topology (1507.02931v2)

Published 10 Jul 2015 in cs.CG

Abstract: Several aspects of managing a sensor network (e.g., motion planning for data mules, serial data fusion and inference) benefit once the network is linearized to a path. The linearization is often achieved by constructing a space filling curve in the domain. However, existing methods cannot handle networks distributed on surfaces of complex topology. This paper presents a novel method for generating space filling curves for 3D sensor networks that are distributed densely on some two-dimensional geometric surface. Our algorithm is completely distributed and constructs a path which gets uniformly, progressively denser as it becomes longer. We analyze the algorithm mathematically and prove that the curve we obtain is dense. Our method is based on the Hodge decomposition theorem and uses holomorphic differentials on Riemann surfaces. The underlying high genus surface is conformally mapped to a union of flat tori and then a proportionally-dense space filling curve on this union is constructed. The pullback of this curve to the original network gives us the desired curve.

Citations (5)

Summary

We haven't generated a summary for this paper yet.