Papers
Topics
Authors
Recent
2000 character limit reached

Differentially Private Ordinary Least Squares

Published 9 Jul 2015 in cs.DS, cs.CR, and cs.LG | (1507.02482v4)

Abstract: Linear regression is one of the most prevalent techniques in machine learning, however, it is also common to use linear regression for its \emph{explanatory} capabilities rather than label prediction. Ordinary Least Squares (OLS) is often used in statistics to establish a correlation between an attribute (e.g. gender) and a label (e.g. income) in the presence of other (potentially correlated) features. OLS assumes a particular model that randomly generates the data, and derives \emph{$t$-values} --- representing the likelihood of each real value to be the true correlation. Using $t$-values, OLS can release a \emph{confidence interval}, which is an interval on the reals that is likely to contain the true correlation, and when this interval does not intersect the origin, we can \emph{reject the null hypothesis} as it is likely that the true correlation is non-zero. Our work aims at achieving similar guarantees on data under differentially private estimators. First, we show that for well-spread data, the Gaussian Johnson-Lindenstrauss Transform (JLT) gives a very good approximation of $t$-values, secondly, when JLT approximates Ridge regression (linear regression with $l_2$-regularization) we derive, under certain conditions, confidence intervals using the projected data, lastly, we derive, under different conditions, confidence intervals for the "Analyze Gauss" algorithm (Dwork et al, STOC 2014).

Citations (111)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.