Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Malware Task Identification: A Data Driven Approach (1507.01930v1)

Published 7 Jul 2015 in cs.CR

Abstract: Identifying the tasks a given piece of malware was designed to perform (e.g. logging keystrokes, recording video, establishing remote access, etc.) is a difficult and time-consuming operation that is largely human-driven in practice. In this paper, we present an automated method to identify malware tasks. Using two different malware collections, we explore various circumstances for each - including cases where the training data differs significantly from test; where the malware being evaluated employs packing to thwart analytical techniques; and conditions with sparse training data. We find that this approach consistently out-performs the current state-of-the art software for malware task identification as well as standard machine learning approaches - often achieving an unbiased F1 score of over 0.9. In the near future, we look to deploy our approach for use by analysts in an operational cyber-security environment.

Citations (7)

Summary

We haven't generated a summary for this paper yet.