Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maxima of the Q-index: graphs with no K_s,t (1507.00625v1)

Published 2 Jul 2015 in math.CO

Abstract: This note presents a new spectral version of the graph Zarankiewicz problem: How large can be the maximum eigenvalue of the signless Laplacian of a graph of order $n$ that does not contain a specified complete bipartite subgraph. A conjecture is stated about general complete bipartite graphs, which is proved for infinitely many cases. More precisely, it is shown that if $G$ is a graph of order $n,$ with no subgraph isomorphic to $K_{2,s+1},$ then the largest eigenvalue $q(G)$ of the signless Laplacian of $G$ satisfies [ q(G)\leq\frac{n+2s}{2}+\frac{1}{2}\sqrt{(n-2s){2}+8s}, ] with equality holding if and only if $G$ is a join of $K_{1}$ and an $s$-regular graph of order $n-1.$

Summary

We haven't generated a summary for this paper yet.