Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights (1506.06167v1)

Published 19 Jun 2015 in cond-mat.stat-mech and physics.soc-ph

Abstract: We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional return probability and a global time, showing that the efficiency to navigate the network is greater if we use a fractional random walk in comparison to a normal random walk. For the case of a ring, we obtain exact analytical results showing that the fractional transition and return probabilities follow a long-range power-law decay, leading to the emergence of L\'evy flights on networks. Our general fractional diffusion formalism applies to regular, random and complex networks and can be implemented from the spectral properties of the Laplacian matrix, providing an important tool to analyze anomalous diffusion on networks.

Summary

We haven't generated a summary for this paper yet.