Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

A Spatial Layout and Scale Invariant Feature Representation for Indoor Scene Classification (1506.05532v2)

Published 18 Jun 2015 in cs.CV

Abstract: Unlike standard object classification, where the image to be classified contains one or multiple instances of the same object, indoor scene classification is quite different since the image consists of multiple distinct objects. Further, these objects can be of varying sizes and are present across numerous spatial locations in different layouts. For automatic indoor scene categorization, large scale spatial layout deformations and scale variations are therefore two major challenges and the design of rich feature descriptors which are robust to these challenges is still an open problem. This paper introduces a new learnable feature descriptor called "spatial layout and scale invariant convolutional activations" to deal with these challenges. For this purpose, a new Convolutional Neural Network architecture is designed which incorporates a novel 'Spatially Unstructured' layer to introduce robustness against spatial layout deformations. To achieve scale invariance, we present a pyramidal image representation. For feasible training of the proposed network for images of indoor scenes, the paper proposes a new methodology which efficiently adapts a trained network model (on a large scale data) for our task with only a limited amount of available training data. Compared with existing state of the art, the proposed approach achieves a relative performance improvement of 3.2%, 3.8%, 7.0%, 11.9% and 2.1% on MIT-67, Scene-15, Sports-8, Graz-02 and NYU datasets respectively.

Citations (67)

Summary

We haven't generated a summary for this paper yet.