The ultimate tactics of self-referential systems (1506.04952v1)
Abstract: Mathematics is usually regarded as a kind of language. The essential behavior of physical phenomena can be expressed by mathematical laws, providing descriptions and predictions. In the present essay I argue that, although mathematics can be seen, in a first approach, as a language, it goes beyond this concept. I conjecture that mathematics presents two extreme features, denoted here by {\sl irreducibility} and {\sl insaturation}, representing delimiters for self-referentiality. These features are then related to physical laws by realizing that nature is a self-referential system obeying bounds similar to those respected by mathematics. Self-referential systems can only be autonomous entities by a kind of metabolism that provides and sustains such an autonomy. A rational mind, able of consciousness, is a manifestation of the self-referentiality of the Universe. Hence mathematics is here proposed to go beyond language by actually representing the most fundamental existence condition for self-referentiality. This idea is synthesized in the form of a principle, namely, that {\sl mathematics is the ultimate tactics of self-referential systems to mimic themselves}. That is, well beyond an effective language to express the physical world, mathematics uncovers a deep manifestation of the autonomous nature of the Universe, wherein the human brain is but an instance.
Collections
Sign up for free to add this paper to one or more collections.