Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Overlooked Potential of Generalized Linear Models in Astronomy-III: Bayesian Negative Binomial Regression and Globular Cluster Populations (1506.04792v2)

Published 15 Jun 2015 in astro-ph.IM, astro-ph.CO, astro-ph.GA, and stat.AP

Abstract: In this paper, the third in a series illustrating the power of generalized linear models (GLMs) for the astronomical community, we elucidate the potential of the class of GLMs which handles count data. The size of a galaxy's globular cluster population $N_{\rm GC}$ is a prolonged puzzle in the astronomical literature. It falls in the category of count data analysis, yet it is usually modelled as if it were a continuous response variable. We have developed a Bayesian negative binomial regression model to study the connection between $N_{\rm GC}$ and the following galaxy properties: central black hole mass, dynamical bulge mass, bulge velocity dispersion, and absolute visual magnitude. The methodology introduced herein naturally accounts for heteroscedasticity, intrinsic scatter, errors in measurements in both axes (either discrete or continuous), and allows modelling the population of globular clusters on their natural scale as a non-negative integer variable. Prediction intervals of 99% around the trend for expected $N_{\rm GC}$comfortably envelope the data, notably including the Milky Way, which has hitherto been considered a problematic outlier. Finally, we demonstrate how random intercept models can incorporate information of each particular galaxy morphological type. Bayesian variable selection methodology allows for automatically identifying galaxy types with different productions of GCs, suggesting that on average S0 galaxies have a GC population 35% smaller than other types with similar brightness.

Summary

We haven't generated a summary for this paper yet.