Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entropic and displacement interpolation: a computational approach using the Hilbert metric (1506.04255v1)

Published 13 Jun 2015 in math.OC and cs.SY

Abstract: Monge-Kantorovich optimal mass transport (OMT) provides a blueprint for geometries in the space of positive densities -- it quantifies the cost of transporting a mass distribution into another. In particular, it provides natural options for interpolation of distributions (displacement interpolation) and for modeling flows. As such it has been the cornerstone of recent developments in physics, probability theory, image processing, time-series analysis, and several other fields. In spite of extensive work and theoretical developments, the computation of OMT for large scale problems has remained a challenging task. An alternative framework for interpolating distributions, rooted in statistical mechanics and large deviations, is that of Schroedinger bridges (entropic interpolation). This may be seen as a stochastic regularization of OMT and can be cast as the stochastic control problem of steering the probability density of the state-vector of a dynamical system between two marginals. In this approach, however, the actual computation of flows had hardly received any attention. In recent work on Schroedinger bridges for Markov chains and quantum evolutions, we noted that the solution can be efficiently obtained from the fixed-point of a map which is contractive in the Hilbert metric. Thus, the purpose of this paper is to show that a similar approach can be taken in the context of diffusion processes which i) leads to a new proof of a classical result on Schroedinger bridges and ii) provides an efficient computational scheme for both, Schroedinger bridges and OMT. We illustrate this new computational approach by obtaining interpolation of densities in representative examples such as interpolation of images.

Citations (107)

Summary

We haven't generated a summary for this paper yet.