Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recovering communities in the general stochastic block model without knowing the parameters (1506.03729v1)

Published 11 Jun 2015 in math.PR, cs.IT, cs.LG, cs.SI, and math.IT

Abstract: Most recent developments on the stochastic block model (SBM) rely on the knowledge of the model parameters, or at least on the number of communities. This paper introduces efficient algorithms that do not require such knowledge and yet achieve the optimal information-theoretic tradeoffs identified in [AS15] for linear size communities. The results are three-fold: (i) in the constant degree regime, an algorithm is developed that requires only a lower-bound on the relative sizes of the communities and detects communities with an optimal accuracy scaling for large degrees; (ii) in the regime where degrees are scaled by $\omega(1)$ (diverging degrees), this is enhanced into a fully agnostic algorithm that only takes the graph in question and simultaneously learns the model parameters (including the number of communities) and detects communities with accuracy $1-o(1)$, with an overall quasi-linear complexity; (iii) in the logarithmic degree regime, an agnostic algorithm is developed that learns the parameters and achieves the optimal CH-limit for exact recovery, in quasi-linear time. These provide the first algorithms affording efficiency, universality and information-theoretic optimality for strong and weak consistency in the general SBM with linear size communities.

Citations (87)

Summary

We haven't generated a summary for this paper yet.