Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Mittag-Leffler Analysis II: Application to the fractional heat equation (1506.02915v1)

Published 9 Jun 2015 in math.FA

Abstract: Mittag-Leffler analysis is an infinite dimensional analysis with respect to non-Gaussian measures of Mittag-Leffler type which generalizes the powerful theory of Gaussian analysis and in particular white noise analysis. In this paper we further develop the Mittag-Leffler analysis by characterizing the convergent sequences in the distribution space. Moreover we provide an approximation of Donsker's delta by square integrable functions. Then we apply the structures and techniques from Mittag-Leffler analysis in order to show that a Green's function to the time-fractional heat equation can be constructed using generalized grey Brownian motion (ggBm) by extending the fractional Feynman-Kac formula from Schneider. Moreover we analyse ggBm, show its differentiability in a distributional sense and the existence of corresponding local times.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.