Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Dynamic Structure for High Dimensional Covariance Matrices and its Application in Portfolio Allocation (1506.01407v1)

Published 3 Jun 2015 in stat.ME

Abstract: Estimation of high dimensional covariance matrices is an interesting and important research topic. In this paper, we propose a dynamic structure and develop an estimation procedure for high dimensional covariance matrices. Asymptotic properties are derived to justify the estimation procedure and simulation studies are conducted to demonstrate its performance when the sample size is finite. By exploring a financial application, an empirical study shows that portfolio allocation based on dynamic high dimensional covariance matrices can significantly outperform the market from 1995 to 2014. Our proposed method also outperforms portfolio allocation based on the sample covariance matrix and the portfolio allocation proposed in Fan, Fan and Lv (2008).

Summary

We haven't generated a summary for this paper yet.