Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Axiomatic approach to contextuality and nonlocality (1506.00509v1)

Published 1 Jun 2015 in quant-ph

Abstract: We present a unified axiomatic approach to contextuality and non-locality based on the fact that both are resource theories. In those theories the main objects are consistent boxes, which can be transformed by certain operations to achieve certain tasks. The amount of resource is quantified by appropriate measures of the resource. Following paper [J.I. de Vicente, J. Phys. A: Math. Theor. {\bf 47}, 424017 (2014)], and recent development of abstract approach to resource theories, such as entanglement theory, we propose axioms and welcome properties for operations and measures of resources. As one of the axioms of the measure we propose the asymptotic continuity: the measure should not differ on boxes that are close to each other by more than the distance with a factor depending logarithmically on the dimension of the boxes. We prove that relative entropy of contextuality is asymptotically continuous. Considering another concept from entanglement theory---the convex roof of a measure---we prove that for some non-local and contextual polytopes, the relative entropy of a resource is upper bounded up to a constant factor by the cost of the resource. Finally, we prove that providing a measure $X$ of resource does not increase under allowed class of operations, such as e.g. wirings, the maximal distillable resource which can be obtained by these operations is bounded from above by the value of $X$ up to a constant factor. We show explicitly which axioms are used in the proofs of presented results, so that analogous results may remain true in other resource theories with analogous axioms. We also make use of the known distillation protocol of bipartite nonlocality to show how contextual resources can be distilled.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube