Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Relevance Determination For Deep Generative Models (1505.07765v3)

Published 28 May 2015 in stat.ML

Abstract: A recurring problem when building probabilistic latent variable models is regularization and model selection, for instance, the choice of the dimensionality of the latent space. In the context of belief networks with latent variables, this problem has been adressed with Automatic Relevance Determination (ARD) employing Monte Carlo inference. We present a variational inference approach to ARD for Deep Generative Models using doubly stochastic variational inference to provide fast and scalable learning. We show empirical results on a standard dataset illustrating the effects of contracting the latent space automatically. We show that the resulting latent representations are significantly more compact without loss of expressive power of the learned models.

Citations (8)

Summary

We haven't generated a summary for this paper yet.