Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discreteness for energies of Yang-Mills connections over four-dimensional manifolds (1505.06995v1)

Published 26 May 2015 in math.DG, hep-th, math-ph, math.AP, and math.MP

Abstract: We generalize our previous results (Theorem 1 and Corollary 2 in arXiv:1412.4114) and Theorem 1 in arXiv:1502.00668) on the existence of an $L2$-energy gap for Yang-Mills connections over closed four-dimensional manifolds and energies near the ground state (occupied by flat, anti-self-dual, or self-dual connections) to the case of Yang-Mills connections with arbitrary energies. We prove that for any principal bundle with compact Lie structure group over a closed, four-dimensional, Riemannian manifold, the $L2$ energies of Yang-Mills connections on a principal bundle form a discrete sequence without accumulation points. Our proof employs a version of our {\L}ojasiewicz-Simon gradient inequality for the Yang-Mills $L2$-energy functional from our monograph arXiv:1409.1525 and extensions of our previous results on the bubble-tree compactification for the moduli space of anti-self-dual connections arXiv:1504.05741 to the moduli space of Yang-Mills connections with a uniform $L2$ bound on their energies.

Summary

We haven't generated a summary for this paper yet.