Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras (1505.06666v4)

Published 25 May 2015 in math.GT and math.RT

Abstract: In this paper we announce the existence of a family of new $2$-variable polynomial invariants for oriented classical links defined via a Markov trace on the Yokonuma-Hecke algebra of type $A$. Yokonuma-Hecke algebras are generalizations of Iwahori-Hecke algebras, and this family contains the Homflypt polynomial, the famous $2$-variable invariant for classical links arising from the Iwahori-Hecke algebra of type $A$. We show that these invariants are topologically equivalent to the Homflypt polynomial on knots, but not on links, by providing pairs of Homflypt-equivalent links that are distinguished by our invariants. In order to do this, we prove that our invariants can be defined diagrammatically via a special skein relation involving only crossings between different components. We further generalize this family of invariants to a new $3$-variable skein link invariant which is stronger than the Homflypt polynomial. Finally, we present a closed formula for this invariant, by W.B.R. Lickorish, which uses Homflypt polynomials of sublinks and linking numbers of a given oriented link.

Summary

We haven't generated a summary for this paper yet.