Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical and Algorithmic Perspectives on Randomized Sketching for Ordinary Least-Squares -- ICML (1505.06659v1)

Published 25 May 2015 in stat.ML

Abstract: We consider statistical and algorithmic aspects of solving large-scale least-squares (LS) problems using randomized sketching algorithms. Prior results show that, from an \emph{algorithmic perspective}, when using sketching matrices constructed from random projections and leverage-score sampling, if the number of samples $r$ much smaller than the original sample size $n$, then the worst-case (WC) error is the same as solving the original problem, up to a very small relative error. From a \emph{statistical perspective}, one typically considers the mean-squared error performance of randomized sketching algorithms, when data are generated according to a statistical linear model. In this paper, we provide a rigorous comparison of both perspectives leading to insights on how they differ. To do this, we first develop a framework for assessing, in a unified manner, algorithmic and statistical aspects of randomized sketching methods. We then consider the statistical prediction efficiency (PE) and the statistical residual efficiency (RE) of the sketched LS estimator; and we use our framework to provide upper bounds for several types of random projection and random sampling algorithms. Among other results, we show that the RE can be upper bounded when $r$ is much smaller than $n$, while the PE typically requires the number of samples $r$ to be substantially larger. Lower bounds developed in subsequent work show that our upper bounds on PE can not be improved.

Citations (16)

Summary

We haven't generated a summary for this paper yet.