Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremes of vector-valued Gaussian processes: exact asymptotics (1505.06461v1)

Published 24 May 2015 in math.PR

Abstract: Let ${X_i(t),t\ge0}, 1\le i\le n$ be mutually independent centered Gaussian processes with almost surely continuous sample paths. We derive the exact asymptotics of $$ P\left(\exists_{t \in [0,T]} \forall_{i=1 ... n} X_i(t)> u \right) $$ as $u\to\infty$, for both locally stationary $X_i$'s and $X_i$'s with a non-constant generalized variance function. Additionally, we analyze properties of multidimensional counterparts of the Pickands and Piterbarg constants, that appear in the derived asymptotics. Important by-products of this contribution are the vector-process extensions of the Piterbarg inequality, the Borell-TIS inequality, the Slepian lemma and the Pickands-Piterbarg lemma which are the main pillars of the extremal theory of vector-valued Gaussian processes.

Summary

We haven't generated a summary for this paper yet.